

Group of Institutions

CHHUCHHAKWAS, JHAJJAR
www.redschoolchk.in

Sample Paper of Scholarship cum Admission Test for Class-XII (Medical)

PART-1 (PHYSICS)

1. A projectile is launched with a speed of 10 m./s at an angle 60° with the horizontal from a sloping surface of inclination 30° . The range R is (Take g=10 m/s²)

- (a) 4.9 m
- (b) 13.3 m
- (c) 9.1 m
- (d) 12.6 m
- 2. An insect crawls up a hemispherical surface very slowly. The coefficient of friction between the insect and the surface is $\frac{1}{3}$. If the line joining the centre of the hemispherical surface to the insect makes an angle α with the vertical the maximum possible value of α is given by

- (a) $\cot \alpha = 3$
- (b) $\tan \alpha = 3$
- (c) $\sec \alpha = 3$
- (d) $\cos ec\alpha = 3$
- 3. An ideal massless spring S can be compressed 1 m by a force of 100 N in equlibrium. The same spring is placed at the bottom of a frictionless inclined plane inclined at 30° to the horizontal. A 10 kg block M is released from rest at the top of the incline and is brought to rest momentarily after compressing the spring by 2m. If g= 10 m/s², what is the speed of mass just before it touches the spring?

- (a) $\sqrt{20}m/s$
- (b) $\sqrt{30}m/s$
- (c) $\sqrt{10}m/s$
- (d) $\sqrt{40}m/s$
- 4. In a two block system an initial velocity v_0 with respect to ground is given to block A.

(a)	$\frac{\alpha^2}{2\beta}$	(b)	$\frac{\alpha^2 - \beta^2}{2\alpha}$	(c)	$\frac{\alpha^2 - \beta^2}{2\beta}$	(d)	$\frac{(\alpha-\beta)\alpha}{2}$
			PART-2 (0	CHEMIS	STRY)		
							is the number of
a)	0.043°	b)	ne mixture 4.4	c)	3.4	d)	0.437
Whic	h of the follo	wing is n	ot a water sof	tener?			
a)			Permutit		Na,CO_3	d)	$Na_{2}CO_{4}$
_	_		extended form acter:	of the pe	eriodic table w	ith increa	ase in atomic
numba) c) A lig	Ge > Pb > Pb > Ge >	allic chara Sn Sn Juency is	equal to 6×10	b) d) ¹⁴ Hz is i	Ge > Sn > l Pb > Sn > 0	Pb Ge netal who	ase in atomic ose work function trons emitted wil
numb a) c) A lig 2eV	oner, the meta Ge > Pb > Pb > Ge > th whose free $(h = 6.63 \times 10^{-3})$	allic chara Sn Sn Juency is Juency is	equal to 6×10	b) d) ¹⁴ Hz is i). The m	Ge > Sn > I Pb > Sn > C ncident on a m aximum energ	Pb Ge netal who y of elec	ose work function trons emitted wil
numba) c) A lig 2eV a)	oner, the meta Ge > Pb > Pb > Ge > th whose free $(h = 6.63 \times 10^{-3})$	allic chara Sn Sn Juency is Juency is Juency is Juency is	equal to 6×10^{-19} J 4.49 eV	b) d) ¹⁴ Hz is i). The m	Ge > Sn > I Pb > Sn > C ncident on a m aximum energ	Pb Ge netal who y of elec	ose work function trons emitted wil
numba) c) A lig 2eV a) The	oner, the meta Ge > Pb > Pb > Ge > th whose free $(h = 6.63 \times 10^{\circ})$ 2.49e V TUPAC name	allic chara Sn Sn Juency is 134 Js, leV b)	equal to 6×10 $f = 1.6 \times 10^{-19} \text{J}$ 4.49 eV $f = 1.6 \times 10^{-19} \text{J}$ $f = 1.6 \times 10^{-19} \text{J}$	b) d) l ⁴ Hz is i). The m	Ge > Sn > I Pb > Sn > C ncident on a m aximum energ	Pb Ge netal who y of elec	ose work function trons emitted wil
numba) c) A lig 2eV a) The	oner, the meta Ge > Pb > Pb > Ge > th whose free $(h = 6.63 \times 10^{\circ})$ 2.49e V TUPAC name	allic chara Sn Sn Juency is 34 Js, leV b) of the fo	equal to 6×10 $f = 1.6 \times 10^{-19}$ J 4.49 eV llowing is: $f = CH_2COOH$	b) d) l ⁴ Hz is i). The m	Ge > Sn > I Pb > Sn > On Incident on a maximum energy 0.49 eV	Pb Ge netal who y of elec d)	ose work function trons emitted wil

Apoenzyme c)

Co-enzyme

d)

NAD

The momentum of block A is not conserved.

The momentum of system of blocks A and B is conserved.

The increase in momentum of B is equal to the decrease in momentum of block A

the

is be.

(a) (b)

(c) (d)

5.

6.

7.

8.

9.

10.

11.

a)

All of the above

Protein portion of enzyme is called :-

Co-factor

b)

12. Which one of the following is not a living fossil?

- a) Peripatus
- b) King crab
- c) Sphenodon
- d) Archeopteryx

13. Fruit of mustard is

a) Siliqua

b) Achene

c) Nut

d) Cypsella

14. Which of the Amino acid is in zwitterionic form:

- a) $H_3^{\dagger}N$ —CH—COOH R
- b) H₃⁺N—CH—COO⁻
- c) H₂N—CH—COOH R

d) H₂N—CH—COO⁻

15. The theory of random genetic drift was proposed by :

a) Sewall Wright

b) Hardy-Weinberg

c) R A Fisher

d) Mayer