Group of Institutions CHHUCHHAKWAS, JHAJJAR www.redschoolchk.in ## Sample Paper of Scholarship cum Admission Test for Class-XII (Medical) ## PART-1 (PHYSICS) 1. A projectile is launched with a speed of 10 m./s at an angle 60° with the horizontal from a sloping surface of inclination 30° . The range R is (Take g=10 m/s²) - (a) 4.9 m - (b) 13.3 m - (c) 9.1 m - (d) 12.6 m - 2. An insect crawls up a hemispherical surface very slowly. The coefficient of friction between the insect and the surface is $\frac{1}{3}$. If the line joining the centre of the hemispherical surface to the insect makes an angle α with the vertical the maximum possible value of α is given by - (a) $\cot \alpha = 3$ - (b) $\tan \alpha = 3$ - (c) $\sec \alpha = 3$ - (d) $\cos ec\alpha = 3$ - 3. An ideal massless spring S can be compressed 1 m by a force of 100 N in equlibrium. The same spring is placed at the bottom of a frictionless inclined plane inclined at 30° to the horizontal. A 10 kg block M is released from rest at the top of the incline and is brought to rest momentarily after compressing the spring by 2m. If g= 10 m/s², what is the speed of mass just before it touches the spring? - (a) $\sqrt{20}m/s$ - (b) $\sqrt{30}m/s$ - (c) $\sqrt{10}m/s$ - (d) $\sqrt{40}m/s$ - 4. In a two block system an initial velocity v_0 with respect to ground is given to block A. | (a) | $\frac{\alpha^2}{2\beta}$ | (b) | $\frac{\alpha^2 - \beta^2}{2\alpha}$ | (c) | $\frac{\alpha^2 - \beta^2}{2\beta}$ | (d) | $\frac{(\alpha-\beta)\alpha}{2}$ | |----------------------------------|--|---|--|--|--|--|---| | | | | PART-2 (0 | CHEMIS | STRY) | | | | | | | | | | | is the number of | | a) | 0.043° | b) | ne mixture 4.4 | c) | 3.4 | d) | 0.437 | | Whic | h of the follo | wing is n | ot a water sof | tener? | | | | | a) | | | Permutit | | Na,CO_3 | d) | $Na_{2}CO_{4}$ | | _ | _ | | extended form acter: | of the pe | eriodic table w | ith increa | ase in atomic | | numba)
c)
A lig | Ge > Pb > Pb > Ge > | allic chara
Sn
Sn
Juency is | equal to 6×10 | b)
d)
¹⁴ Hz is i | Ge > Sn > l Pb > Sn > 0 | Pb
Ge
netal who | ase in atomic ose work function trons emitted wil | | numb
a)
c)
A lig
2eV | oner, the meta
Ge > Pb >
Pb > Ge >
th whose free
$(h = 6.63 \times 10^{-3})$ | allic chara
Sn
Sn
Juency is
Juency is | equal to 6×10 | b)
d)
¹⁴ Hz is i
). The m | Ge > Sn > I
Pb > Sn > C
ncident on a m
aximum energ | Pb
Ge
netal who
y of elec | ose work function
trons emitted wil | | numba) c) A lig 2eV a) | oner, the meta
Ge > Pb >
Pb > Ge >
th whose free
$(h = 6.63 \times 10^{-3})$ | allic chara
Sn
Sn
Juency is
Juency is
Juency is
Juency is | equal to 6×10^{-19} J
4.49 eV | b)
d)
¹⁴ Hz is i
). The m | Ge > Sn > I
Pb > Sn > C
ncident on a m
aximum energ | Pb
Ge
netal who
y of elec | ose work function
trons emitted wil | | numba) c) A lig 2eV a) The | oner, the meta
Ge > Pb >
Pb > Ge >
th whose free
$(h = 6.63 \times 10^{\circ})$
2.49e V
TUPAC name | allic chara
Sn
Sn
Juency is
134 Js, leV
b) | equal to 6×10
$f = 1.6 \times 10^{-19} \text{J}$
4.49 eV
$f = 1.6 \times 10^{-19} \text{J}$
$f = 1.6 \times 10^{-19} \text{J}$ | b)
d)
l ⁴ Hz is i
). The m | Ge > Sn > I
Pb > Sn > C
ncident on a m
aximum energ | Pb
Ge
netal who
y of elec | ose work function
trons emitted wil | | numba) c) A lig 2eV a) The | oner, the meta
Ge > Pb >
Pb > Ge >
th whose free
$(h = 6.63 \times 10^{\circ})$
2.49e V
TUPAC name | allic chara
Sn
Sn
Juency is
34 Js, leV
b)
of the fo | equal to 6×10
$f = 1.6 \times 10^{-19}$ J
4.49 eV
llowing is:
$f = CH_2COOH$ | b)
d)
l ⁴ Hz is i
). The m | Ge > Sn > I
Pb > Sn > On
Incident on a maximum energy
0.49 eV | Pb
Ge
netal who
y of elec
d) | ose work function
trons emitted wil | Apoenzyme c) Co-enzyme d) NAD The momentum of block A is not conserved. The momentum of system of blocks A and B is conserved. The increase in momentum of B is equal to the decrease in momentum of block A the is be. (a) (b) (c) (d) 5. 6. 7. 8. 9. 10. 11. a) All of the above Protein portion of enzyme is called :- Co-factor b) 12. Which one of the following is not a living fossil? - a) Peripatus - b) King crab - c) Sphenodon - d) Archeopteryx 13. Fruit of mustard is a) Siliqua b) Achene c) Nut d) Cypsella 14. Which of the Amino acid is in zwitterionic form: - a) $H_3^{\dagger}N$ —CH—COOH R - b) H₃⁺N—CH—COO⁻ - c) H₂N—CH—COOH R d) H₂N—CH—COO⁻ 15. The theory of random genetic drift was proposed by : a) Sewall Wright b) Hardy-Weinberg c) R A Fisher d) Mayer